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ABSTRACT

A decentralized platform as a service would enable applications to live in a permanent,
uncensorable state, without the ability to be deplatformed by a service provider. Running
an application on a tertiary device is implicitly a key component, however the reason cloud
computing has worked is a sale of trust – trust that the provider will keep the application
and the data being processed private. Verifiable computation allows applications to run on
untrusted environments and ensure that the application did behave as expected, bringing
the data and its computation closer to the requestor, however does not explicitly safeguard
the data, nor does it make the application uncensorable. Fully homomorphic encryption
processes solve for both the data privacy and verifiability aspects, but does not necessarily
prevent all forms of censorship, nor does it explicitly provide repudiability or nescience to
the application being served or the requestor. We propose a new protocol which addresses
these deficits, solving the trilemma of privacy, verifiability, and censorship resistance using a
peer-to-peer network. The network functionally serves as an oblivious sharded hypergraph
database, in which nodes are blind to whether their participation enabled a query to succeed,
what data was queried, the contents thereof, or the requestor which initiated the query. We
further extend the capability of this database with an operating system running on top of it
which provides familiar services upon which applications may be built.
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1 Introduction

Quilibrium is a new decentralized network model which leverages techniques that differ from common block
chain constructions. Directly, it does not build consensus around a block chain, but indirectly, a block chain
or any other data structure may be maintained within the shards of the hypergraph.

Figure 1: A simplified depiction of a block chain
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Figure 2: A simplified depiction of a sharded hypergraph network
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A major distinction beyond the core data structure also includes the interactivity model preserving complete
privacy and anonymity, at the communication level, the query planner level, and the storage level.

To revisit the network behaviors of many block chain-based constructions, the typical behavior of nodes is
to be responsible for verifying and validating transactions, and for adding new blocks of transactions to the
block chain to maintain the structure:

• Nodes receive new transactions from users on the network and verify that the transactions are valid
according to the rules of the protocol. This typically involves validating a signature and that the
transaction does not violate any rules or constraints, such as double-spending or invalid execution of
code.

• Once a node has verified a transaction, it broadcasts the transaction to other nodes on the network,
who also verify the transaction and add it to their own local copy of the block being created.
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• Depending on the rules of the protocol, either based on meeting a sufficient difficulty bar in calculating
a hash for the block, or being the leader node for the network for that block interval, it creates a new
block of transactions and adds it to the block chain. Regardless of consensus method, it typically
involves calculating a cryptographic hash for the new block an incorporates it into the header, which
serves as a unique identifier for the block and links it to the subsequent block in the chain.

• Once a new block has been added to the block chain, the node broadcasts the block to other nodes on
the network, who also verify the block and add it to their own local copy of the block chain.

• In the event there are valid but conflicting blocks, the network follows a fork-choice methodology,
typically the pattern of the longest continuing series of blocks in the fork wins. The fork-choice
behavior is needfully constrained to be bounded to a probabilistic outcome, in that the likelihood
of two viable forks continuing to propagate in length is infeasible beyond a low number of blocks,
such that the network may consider all transactions prior to the probabilistic height to be considered
finalized.

This approach requires the attribution of significant resources, whether it is computational power, disk space,
memory, or wealth incentives in order to assure the security of the protocol, and by consequence is subject
to manipulation in the event any of those can be introduced in outsized influence. In the former, this would
typically require an outsized influence greater than fifty percent of the network. In the latter-most, this
typically is bounded by the wealth being denominated in the token the network issues in reward for following
the protocol, with a requirement that of the wealth put at stake, at least two-thirds have agreed to this finalized
state.

The central reason of why these networks converge on a block chain under the efforts of this consensus model
is specifically to avoid invalid conflicting state, which under data structures with many forward propagating
edges to subsequent nodes is otherwise possible due to the transaction and/or state management model not
having an unforgeable basis with which it can prevent conflicting state transitions. This ultimately has the
downside of bandwidth being constrained to the capacity of block size, whether it is a convergence of state
transitions by commitment or the raw transaction data being conveyed.

In summary, the nature of block chain networks produces inherent limitations on scalability due to a reliance
on probabilistic consensus schemes to prevent malicious or otherwise adverse behaviors.

1.1 Approach

Quilibrium’s network design utilizes cryptographic approaches to provide unforgeably valid transitions
of state, such that adverse conditions are structurally impossible, and malicious behaviors are implicitly
punishable by removal and reveal.

This article describes the full scope of the network, including full detail of the foundational principles and
protocols used, so that while the source material is referenced, this article may be understood without needing
to refer to any additional material.

To begin, we will review the communication layer, wherein the privacy-preserving account addressing
scheme, the multi-party group broadcast channel construction with perfect forward secrecy, and anonymous
routing protocol is described. For storage of blocks of data, first, we review the use of verifiable delay
functions, threshold polynomial commitments to enable sharding of the network’s storage, the inter-shard
gossip protocol, ultimately building the hypergraph network. This hypergraph network state furthermore
grants computational privacy through the conversion into an oblivious data structure. First, we describe the
process of oblivious transfer as the base primitive, moving into correlated oblivious transfer and its extensions
as the underlying principle of how the query planner and query evaluator operates, finally realizing Turing
completeness from these operations.

This provides the core of the Quilibrium network, however this article will further elaborate on its utility
through the enumeration of the components atop this network which produces a Database Operating System,
realizing universal resources, one of which is the fungible unit of reward that provides the means of
incentivization for the network to persist and operate. Through this operating system, this article defines
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common applications and their design which can be run that demonstrate the flexibility and capability of the
network.

2 Communication

The network’s communication can be separated out into four components: the Planted Clique Addressing
Scheme, Triple-Ratchet Protocol, Shuffled Lattice Routing Protocol, and Gossip Layer. These components
are explained in this section in completion to the extent they are isolated, however they are combined in
Section 3 to fulfill the construction of a data store for a hypergraph. In Section 4, we further elaborate over use
of the PCAS and SLRP sections to realize the oblivious hypergraph structure, completing the base network.

Some degree of familiarity with learning parity with noise, matrix arithmetic, elliptic curve cryptography is
required for this section. Additionally, familiarity with computational hardness assumptions is also valuable.

2.1 Planted Clique Addressing Scheme

Undirected graphs are a common structure in discrete mathematics which describes a basic relationship
between elements. Graphs are enumerated as a pair of two sets, vertices and edges, where edges are
connections between pairs of vertices. A random graph is merely an undirected graph which possesses some
number of vertices and edges, which have some probabilistic basis in the likelihood of any two vertices being
connected.

Within a graph, a clique is a subset of vertices which are connected to every other vertex in the subset by an
edge. Cliques have an interesting property where given the right conditions, it can be extremely difficult to
find them. For illustration, review the following graph with a 5-clique: on the left, the vertices in the clique
are unmarked. On the right, the vertices in the clique are revealed.
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In the above example, it may be easier to determine due to a few obvious factors: some vertices have fewer
than four edges and the proportion of clique size to total vertices. If a clique is formed by amending a
random graph in a particular way, that clique is said to be a planted clique. The planted clique problem is
a computational hardness assumption which relates to the inability to distinguish between a random graph
from one which has a planted clique in polynomial time.

The computational hardness of finding a planted clique can be leveraged as a type of asymmetric cryp-
tosystem. This is not unheard of, there are a few, albeit uncommon examples of this in existing
literature[Kuč91][JP00][Hud16].

In [Hud16], Péter Hudoba describes a variation in which the planted clique problem is paired with the
Learning Parity with Noise problem to produce a cryptosystem which is, due to the NP-complete nature of
the planted clique problem, believed to be quantum-resistant.

Adopting some common terminology for the sake of further elaboration:
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• Bernε – Bernoulli distribution, in this case as binary 0 – 1 vectors of length n where ε denotes the
probability where the entry is 1.

• Un – Uniform distribution over binary vectors of length n.

• G(n, p) – Erdös-Rényi random graphs.

The Learning Parity with Noise (LPN) problem is, succinctly:

Given M ∈ Fm×n
q and s ∈ Fn

q , it is computationally infeasible to determine s from Ms+e where e← Bermε

The encryption algorithm is provided from [Hud16]:

Algorithm 1 Encrypt
1: Generate a private key S, public key G. From G we get the adjacency matrix, M .
2: Choose a random vector x← Un and a random noise vector e← Bernε , let b = Mx+ e.

• To encrypt 0, send the vector b.
• To encrypt 1, send the vector b with its last bit flipped.

Algorithm 2 Decrypt
1: To decrypt y ∈ {0, 1}n, output

∑
i∈S yi (mod 2).

Algorithm 3 Key Generation
1: Choose a random G← G(n, p) graph.
2: Choose a random k sized subset from the nodes of the graph containing the last row. Denote it with

S ⊂ [n].
3: Remove all edges between nodes contained in S: replace E by (E \ {(u, v)|u, v ← S}) (plant an

independent set to the positions corresponding to S).
4: Iterate through {u ∈ V \S∥ΠG(u)∩S| ≡ 1 (mod 2)} with u in random order (a) with padd probability

add (u, v) for v ← S \ΠG(u) to E, (b) else remove (u, v) for v ← ΠG(u)|S from E.

The resulting public key is the graph G’s adjacency matrix M , and the private key, S.

Hudoba further notes the encryption algorithm can be extended to more than single bit encryption, and
indeed – Ring-LPN constructions exist [HKL+12], which we will use to realize a decryption mechanism.
The addressing scheme follows:

Algorithm 4 Address Derivation
1: Given M , serialized as a binary string m
2: Assume H(m), where H is the hash function cSHAKE with the ASCII customization string "Quilibrium

Address" as the domain separator, with output length of 256 bits.
3: Derive the address A as A = H(m).

For visual distinction of this resulting output, the preferred serialization is the ASCII encoding of the output
bytes prepended with an address identifier: ′Q′∥′x′∥encode(A). To provide convenience in ensuring proper
address entry, a checksumming algorithm may be used, but it is strongly encouraged that public user interfaces
which interact with addresses do so by indirection via name resources, described in Section 5.7.
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2.2 Triple-Ratchet Protocol

The Triple-Ratchet protocol is an extension to the Double-Ratchet protocol[Mar16], utilizing an asynchronous
DKG ratchet to provide a group key as the counterparty receiver key plugged into the Double-Ratchet
algorithm’s Diffie-Hellman process. Future extensions to transition to fully quantum-resistant schemes will
include migrating the DKG and DH ratchets to threshold Kyber, however this is not planned at this time.

As a 3-of-4 threshold scheme, the protocol flow is depicted as follows:
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Figure 3: A Simplified Depiction of 3-of-4 Triple Ratchet

To explain this protocol we will use the following terms:

• n – Party Count - The number of parties involved in a multiparty scheme.
• t – Threshold - The number of parties required to reach cryptographic quorum.
• Zq – Prime Field - A field where the order is prime.
• {a, b, . . . } ∈ Zq – Field Element - Member elements of a field, such as elliptic curve points.
• G – Group - A cyclic group of order q.
• G – Generator - A chosen field element under a cyclic group which forms a subgroup.
• DLA – Discrete Logarithm Assumption - The assumption that computing discrete logarithms in a

group is computationally infeasible. This assumption only applies in certain conditions, such as
special classes of elliptic curves over finite fields.

• DDH – Decisional Diffie-Hellman - The computational hardness assumption that the discrete
logarithm assumption remains applicable when two randomly sampled scalar factors, multiplied
together and raised exponentially to the generator of the group is indistinguishable from a singular
randomly sampled field element.

• i, j, k – Node Identifier - The identifier of a given party (i) or the identifier of a party relative to the
current party (j, k).

• IDKi, sidki – Identity Key - The unique permanent key pair associated with a given party, with the
public key denoted as IDKi, secret key as sidki.

• SPKi, sspki – Signed Pre-Key - The unique short-lived key pair associated with a given party that
is signed by the party’s identity key, with the public key denoted as SPKi, secret key as sspki.

• EPKi, seki – Ephemeral Key - The unique ephemeral key pair associated with a given party that is
used in a DH ratcheting scheme, with the public key denoted as EPKi, secret key as seki.

• sk, ski – DKG Secret - The logical secret key of the distributed key generation process (sk) and the
individual shares of that secret held by each party ski.

• PK, PKi – DKG Public Key - The public key output of the DKG process (PK) and the individual
sharings of points (PKi) that collectively, when interpolating p at the y-intercept (y=0) with any
subset of t sharings of PK.

10
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• pi, pi,j – Polynomial - A randomly sampled polynomial of degree t − 1 by each party (pi), with
evaluations for another party relative to the current party (pi,j).

• H – Hash function - A cryptographic hash function suitable for use as a random oracle.
• z – Zero Knowledge Proof of Knowledge of the Discrete Logarithm (ZKPoK-DL/ZK-DL) - A proof

which allows a verifier to confirm the prover possesses knowledge of a scalar exponent without
revealing the knowledge.

• c – Commitment - A binding value which confirms a separate value, yet keeps the value hidden until
a later phase in which that value is revealed. This is useful when parties need to collectively agree
to values which will later be combined, but if any one party revealed their value ahead of others, a
malicious party could leverage information from that value and allow them to choose a value that may
manipulate the outcome of the combined value in a way to gain an advantage or complete control
(Rushing Adversary model).

2.2.1 ZKPoK-DL

In this variant of ZKPoK, we are computing a value relative to a threshold sharing of a logical secret key.
Further description of that sharing in of itself is provided in the Secret Sharing and Distributed Key Generation
sections, so for this section, simply assume the threshold sharing of the secret and public key (ski, PKi) to
be already created.

Algorithm 5 Prove
1: Generate a new random scalar, r, as a private key to an EC keypair (ri, Ri = ri ·G), matching the same

curve parameters as the DKG key.
2: To make this process non-interactive, we will apply the Fiat-Shamir heuristic by hashing the serialized

threshold sharing’s public key concatenated with the random public point: (chi = H(PKi||Ri))
3: To calculate the ZKPoK, we take the threshold secret, multiply it against the integer representation of the

challenge, and add the random scalar: (zi = ski · chi + ri)
4: Create a commitment to this ZKPoK by taking the hash of the serialized random public point concatenated

with the ZKPoK: (ci = H(Ri||zi))
5: Broadcast the commitment in the DKG process ahead of the threshold sharing of the public key.

Obtain all commitments, then the ZKPoK, random public points and the threshold sharings of the public key
are released. With these values, verify:

Algorithm 6 Verify
1: Reproduce the challenge by hashing the concatenation of the serialized threshold sharing’s public key

with the random public point: (chj = H(PKj ||Rj))
2: Multiply the challenge scalar against the threshold sharing public key, then add the random public point

to this point, which should equal the scalar multiplication of the ZKPoK against the generator of the
curve: (Zj = chj · PKj +Rj)

3: Multiply the ZKPoK against the generator of the curve and confirm this value equals the previously
calculated value, and abort if this does not match: zj ·G = Zj

4: Take the hash of the serialized random public point concatenated with the ZKPoK, and confirm this
matches the commitment, and abort if this does not match: cj = H(Rj ||zj)

5: If the values matched, return 1, else 0.

2.2.2 Shamir’s Secret Sharing (SSS)

Shamir’s Secret Sharing is a technique for encoding a secret in the form of a constant of a randomly sampled
polynomial, then distributing evaluations of that polynomial to each participant such that the threshold number
of participants in the scheme could perform Lagrange interpolation to reproduce the constant[Sha79]:

11



Quilibrium A PREPRINT

Given a threshold of three participants, construct a t− 1 degree polynomial, randomly sampling coefficients
(A,B) from the finite field, setting the constant C as the secret:

f(x) = Ax2 +Bx+ C

The dealer of these secret shares then evaluates the polynomial where x is the identifier of the participant
(notably, x cannot equal zero as it would simply be handing the participant the secret, and likewise, x cannot
be the order of the group either, as x (mod q) = 0 where x = q).

The dealer distributes these samples to each participant, and when recombining, the participants calculate:

C = f(0) =
∑t−1

j=0 yj
∏t−1

(m=0)
m!=j

xm
xm−xj

2.2.3 Feldman Verifiable Secret Sharing (FVSS)

Feldman Verifiable Secret Sharing is an enhancement to SSS which allows all participants to verify any
combination of threshold shares succeed in producing the same value[Fel87]:

When computing the shares from the secret, take the secret as an exponent to the generator G: s ·G = P ,
and do the same to all the shares: s0 ·G = P0, s1 ·G = P1, ...

Distribute the public values with the secrets to each participant, and distribute P . All participants may do
Lagrange interpolation of the polynomial with the public values of the shares (Shamir in the Exponent) like
before, this time iterating through all participants. The resulting output, if the dealer did not cheat, will equal
P for all combinations of threshold participants. If the dealer did cheat, some or all of the combinations will
not equal P .

2.2.4 Distributed Key Generation

Leveraging the functions of FVSS and ZK-DL, all parties will engage in the following process:

Algorithm 7 Distributed Key Generation (DKG)
1: Perform SSS locally and send unique evaluations of the polynomial to each party.
2: Sum all received fragments to the local scalar secret key ski, and public point (ski ·G = PKi). Calculate

a ZKPoK-DL against these values, and send the commitment to all parties.
3: Once all parties have received the commitments, each party will reveal their public point (PKi), their

random public point from ZKPoK-DL (Ri), and their ZKPoK itself (z).
4: Once all parties have received these values, each party verifies the ZKPoK-DL outputs, if invalid, aborts,

and if valid, then performs the FVSS’ Shamir in the Exponent recombination of the public points. If any
combination produces a differing public key, abort.

2.2.5 Distributed Diffie-Hellman

Recall that in the DKG’s second round, we used the generator G to produce the public point sharings
PKi. Assume DKG has been performed. Any threshold number of parties may now perform Distributed
Diffie-Hellman:

Algorithm 8 Distributed Diffie-Hellman
1: Given a target ephemeral public key (EKj) to perform DH against, calculate ski · EKj = DHi. All

threshold parties broadcast their sharing (DHi).
2: Perform the Shamir in the Exponent recombination, which will result in the output agreed key DH .
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2.2.6 Asynchronous Considerations

The problem with the above DKG approach is that the setup phase requires all parties to not only be online at
time of key generation, but that they must also all perform each round before any may proceed to the next.
While it is feasible in some scenarios to allow a small collection of users to conduct DKG to fit into the
“counterparty” receiver side of the DH ratchet with the expectation that they will remain online (typically,
this would be in a decentralized service in which at least a quorum of node operators leave their nodes always
online), this is inviable for highly asynchronous communicators who may only have one party online at a
time. This friction can be reduced by simultaneously reducing the security of the protocol through removal of
the ZKPoK requirement, and thus participants merely maintain a cache of polynomials/evaluations ahead of
time. Losing the security against Rushing Adversaries may not be problematic for a group chat – indeed,
Double-Ratchet itself does not care as the DH ratchet itself is quite susceptible to this attack.

We could simply allow users to emit one-time use polynomial fragment bundles in step one into a logical set
of queues, each encrypted to the individual peers, and upon an epoch, all parties dequeue the latest polynomial
fragments, perform their summations, and distribute public points (omitting the ZKPoK process) so that local
Shamir in the exponent can be performed to derive the new public key. This can now be our process as well
for the “room key” of the Diffie-Hellman ratchet. This poses two problems, with solutions that break the
original strength of Double-Ratchet:

• A sender, upon first encrypted message send has now revealed to a quorum the shared sending
chain key for that sender. The receivers can now forge any message during this epoch from that
user. Solutions like MLS resolve the message forgery problem through a combination of trust-
oriented components (authentication to the server, authentication in the message), but this removes
repudiability.

• It is possible that a malicious client could emit one-time use polynomial fragment bundles that
produce different public keys to different parties, bifurcating the room key. The protocol could be
amended to not allow a new epoch to proceed until all parties have emitted public points and all
parties have collectively agreed on a key, but that brings us back into a relatively synchronous pattern,
and not all parties are online (and some may even be lost). This would force a re-initiation, which
makes the entire experience slow.

Revisiting the initial setup phase of DKG, we already have the following available to us:

• A list of the participants involved

• A secure peer-to-peer channel

• Relevant keys to the participants (IDKi, SPKi)

Let’s iterate over a theoretical asynchronous DKG protocol which allows for ratcheting of the room key
in a way that any party can reasonably verify no bifurcations may occur, nor permit message forgeries,
without losing the Forward Secrecy, Post-Compromise Secrecy or Repudiation/Deniability properties of
Double-Ratchet.

2.2.7 Polynomial Verifiable Sharing (PVS)

Recall that in FVSS, we had performed Lagrange interpolation over the set of terms raised to the exponent
of the generator (Shamir-in-the-exponent) [Fel87]. Performing the same for the fragments produced by any
given party can provide a meaningful verifiable sharing mechanism, extending from the simple EC additive
homomorphism.
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Algorithm 9 Polynomial Verifiable Sharing (PVS)
1: Given a series of fragment (fragi,j) scalars to send to each party, we can calculate a publicly verifiable

fragment raised to the exponent of the generator FRAGi,j = fragi,j ·G and the secret of the polynomial,
raised to the exponent of the generator: S = s ·G. These public fragments are distributed to all parties.

2: Each party confirms it does not resolve anyone’s polynomial fragment to the point at infinity with the
negation of the previous fragment and the addition of the new and all fragments shared recombine in the
exponent to S.

2.2.8 Asynchronous DKG (ADKG) Ratchet

Now that we have a means to ensure no party can produce invalid fragments, we can adopt a new ratcheting
scheme for DKG. Each party will (upon their need to ratchet):

Algorithm 10 Asynchronous DKG Ratchet
1: Individually perform a local FVSS with PVS, and enqueue the output bundles to the respective recipients.

2: When a new bundle is needed from a given party, the other participants will dequeue the bundle, and
perform the verification process of PVS. Upon confirmation of verification, each party will recalculate
the new shared polynomial, substituting the old fragment with the new to obtain a new ski, and each
party will send their public point (PKi).

3: Each party then performs FVSS’ Shamir-in-the-Exponent recombination of the public points.

2.2.9 Diffie-Hellman Ratchet

The Diffie-Hellman Ratchet of Signal thus remains roughly the same as before, with the sender role as any
sender, the ADKG ratchet as the receiver, and agreement remains one round:

Algorithm 11 Amended Diffie-Hellman Ratchet
1: The threshold number of receivers submit their public points produced by the sender Ephemeral Public

Key point multiplied by the receiver’s private scalar: PEPKi = ski · EPKj . Each receiver will add a
new ADKG ratchet output bundle to the output queues.

2: The threshold number of parties perform Shamir-in-the-Exponent recombination to produce the DH agree-
ment key. This value is fed into the KDF ratchet to produce the receiving chain key. The ADKG ratchet
gets bumped by the first receiver to have submitted a public point – this can be done deterministically in
a context where message ordering cannot be guaranteed.

2.2.10 Key Derivation Function (KDF) Ratchet

The KDF Ratchet also remains roughly the same, except the initial session key (which becomes the initial
root key) is derived from the following for each party:

1. DH1 = DH(idki, PK)

2. DH2 = DH(spki, PK)

3. DH3 = DH(seki, PK)

4. SK = HKDF (salt, (domain||DH1||DH2||DH3), info), where salt is a uniquely different salt from
the Double-Ratchet salt of 32 ‘0x00‘ bytes – instead, 32 ‘0x01‘ bytes, to be distinct from a Double-Ratchet
session derivation. The domain separator remains the same as Double-Ratchet, and info is the relevant
application name for the use of the protocol.
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Algorithm 12 Root Key KDF
1: Given the root key RKi, and output of Distributed Diffie-Hellman DH , use HKDF (salt, input, info)

where salt is RKi, input is DH , and info is the relevant application name for use of the protocol, and
HKDF’s output size is the size of the sum of the root key size and the chain key size.

Algorithm 13 Chain Key KDF
1: Given the chain key CKi, use HMAC(key, input) where key is cki, input is a single byte identifier

given the key being produced:
• 0x01 – message key
• 0x02 – next chain key
• 0x03 – AEAD key

2.3 Shuffled Lattice Routing Protocol

Anonymity is a hard problem, with a long gradient that encompasses the various risk tolerances people will
subject themselves to in exchange for less difficulty: trusting a service to not log your requests, trusting an
ISP to not record your traffic (or split it into a surveillance funnel on the behalf of another actor), assuming
the majority of nodes are not malicious in a distributed proxy, and so on.

Mixnets have been an area of public research since the early 1980s, starting from David Chaum’s paper
"Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms"[Cha81]. The basic principle is
that, given an arbitrary intermediary (typically, a collection of many independent servers aiding in this routing
function), a sender can communicate anonymously with a receiver by enveloped encryption, where the inner
envelope contains a message destined for the receiver, encrypted using the receiver’s encryption key, and
the outer envelope is encrypted for the mixnet provider using the mixnet’s encryption key. This approach is
of course simplistic, and there exist many varied attacks against such a scheme, especially with regards to
statistical privacy, depending on the capabilities of an attacker:

• External passive attacks, where the attacker monitors traffic to and from the mixnet operators, and
the exact timings of communication that occurred.

• External active attacks, where the attacker introduces their own traffic to the mixnet to enhance the
analysis of traffic flow, or disrupt operations to better identify individuals.

• Internal passive attacks, where the attacker operates as a normal mixnet node to decrypt one or more
hops of the traffic.

• Internal active attacks, where the attacker operates as a malicious mixnet node to actively drop some
amounts of traffic to distinctively identify individuals.

As we have seen with the evidence around KAX17’s operations on the Tor network[nus21], the idea that an
adversary with substantial resources would engage in significant node operation in order to undermine the
privacy of a mixnet is not only a hypothetical consideration, it is a present condition of some networks.

In a traditional client-server model with a mixnet proxy inbetween, even when the server is listening only
through the mixnet, a malicious majority can undermine privacy in the interaction. To eliminate this condition,
an alternative where malicious majorities cannot influence traffic patterns in meaningful ways must be
introduced.

2.3.1 Square Lattice Shuffle

In the article "The Square Lattice Shuffle", Johan Håstad proves a particular process involving t permutations
of n elements arranged in a m×m square reaches a statistically negligible difference from uniform distribution
such that[Hås05]:
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∆(Πt, Un) ≤ O(n1−⌊ t
3
⌋ 1
4 (log n)⌊

t
3
⌋)

This process is defined formally in the paper as[Hås05]:
Definition 1. At each time step m permutations of [m], (σi)mi=1 each on m elements, are picked independently
and and uniformly at random. At even time steps, for 0 ≤ i < m, σi is applied to the elements in row i while
at odd steps it is applied to column i. Repeating this process for t time steps with independent choices at
each point in time creates a random permutation from the distribution Πt.

2.3.2 Random Permutation Matrices in a Square Network

The square lattice shuffle process was then adopted and extended in the paper "RPM: Robust Anonymity
at Scale", where permutation nodes utilize a MPC-driven computation of a permutation matrix P , trading
off in computational complexity of the matrix to a square network of nodes. This tradeoff between algo-
rithmic privacy and statistical privacy enables significantly larger number of messages to be mixed by the
network[LK22].

The operation of the network follows three phases:

1. Client message collection – the preparation at the client level requires the creation of a Shamir split of
the message m, that can be ordered deterministically by the servers. This is achieved by generating Shamir
shares of a random value r given out to the client, recombined by the client, and added to the message
m+ r, blinding it. This message can be sent to the servers, who can subtract their share of r and collectively
recombine it in the permutation phase to find m.

2. Server permutation – The aforementioned permutation process is performed with the input vector of
blinded messages (Y = P · (X +R)− PR). This results in an output vector Y of unblinded messages, in
completely shuffled order.

3. Broadcast – All messages are broadcast, to be retrieved by their intended recipients.

Calculation of a permutation matrix through a series of secret sharings first requires the calculation of a
Beaver multiplication triple to perform multiplication (denoted as Mul(x, y)).

The offline algorithm of RPM’s Variant 2 is described as follows[LK22]:

Algorithm 14 Offline Calculation of Permutation Matrix Sharings
1: All parties generate a k × k permutation matrix Mi and generates secret sharings, distributing to each

party
2: All parties verify the columns and rows of each sharing using sketch checks to verify the sharings

correspond to a valid permutation matrix, aborting if a check fails.
3: All parties multiply their received matrix shares and their own share of their matrix, ⟨P ⟩ =
⟨M1⟩⟨M2⟩...⟨Mn⟩

4: All parties generate k random shares, producing the vector ⟨R⟩ = {⟨r1⟩, ⟨r2⟩, ..., ⟨rk⟩}
5: All parties compute ⟨PR⟩,= Mul(⟨P ⟩, ⟨R⟩)

Algorithm 15 Online Matrix Permutation Recombination
1: All parties receive blinded messages using chosen random shares, and are slotted into matching positions

of the R vector
2: All parties recombine the input vector, yielding X +R.
3: All parties calculate ⟨Y ⟩ = ⟨P ⟩ · (X +R)− ⟨PR⟩, and then recombine to produce Y .

2.3.3 Shuffled Lattice Routing

The above process of random permutation matrix processing in a square network[LK22] is conducted locally
within a processing cluster, coordinated through periodic bitmask broadcasts which indicate the collection
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Figure 4: A Depiction of Shuffled Lattice Routing – each circle corresponds to a logical cluster

of addresses the nodes wish to process for. The phases are amended per local cluster to the following, all
conducted in parallel, staggered per step, illustrated in Figure 4:

1. Message collection (Purple arrows) – the messages may come from light clients or full nodes, then sorted
deterministically.

2. Server permutation (Red boxes) – the Variant 3 with Variant 2 permutation process of RPM is followed,
however the permutation matrix shares are then transposed and retained for Phase 4.

3. Broadcast (Pink arrows) – messages are distributed to nodes listening for matching address bitmasks.

4. Processing/Acknowledgement (Green arrows) – messages are confirmed to destination, acknowledgement
is returned.

5. Transpose mix (Red boxes/Blue arrows) – The transpose of the permutation matrix shares is followed
of the tagged acknowledgements, producing clean acknowledgements in the same order as client requests,
allowing anonymous retrieval of confirmation.

Message passing between nodes is communicated following the gossip layer described in Section 2.4.

2.4 Gossip Layer

The final basic element of communication in this network is the message propagation channel. The important
characteristics of such a channel are that we need to handle common disruptive attack patterns:

1. Censorship – An attacker attempts to block communication, either between nodes, clients, messages, or
destination addresses.
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2. Sybil Attacks – An attacker creates many dummy nodes, to perform other types of attacks, or leverage
shared information between parties to gain some kind of advantage.

3. Eclipse Attacks – An attacker overwhelms the world state such that it distorts the state accessible by the
honest nodes.

2.4.1 GossipSub

In "GossipSub: Attack-Resilient Message Propagation in the Filecoin and ETH2.0 Networks", the authors
note the dynamics of various approaches to message propagation and the tradeoffs required to balance high
bandwidth utilization of flooding the network with redundant messages, and on the other extreme a gossip
driven pub-sub approach. Their contribution brought a new approach that served as a middle ground, with
local meshes which engage in local network flooding, meanwhile gossiping announcements of message
availability. To balance network utilization, the local meshes would self balance to a small number of
connections, using a scoring metric to determine quality of peers[VNM+20]:

Score(peer) = TC(
∑4

n=1wn,tPn,t) + w5P5 + w6P6

The values in this formula are defined as environment-specific weights wi, and parameter values, P1 through
P4 are further indexed to the specific topic and capped per TC. The parameters are defined as follows:

1. Time in Mesh for Topic – The time spent as a member of the mesh for the given topic.

2. First Message Deliveries for Topic – The count of times the peer was the first to deliver messages for the
topic.

3. Mesh Message Delivery Rate/Failures for Topic – The delivery metric intended to penalize peers
engaging in behaviors likely to be explicitly dropping messages.

4. Invalid Messages for Topic – The metric intended to penalize peers delivering application-invalid
messages.

5. Application-Specific Score – A deferring score that is application-specific and left to implementation.

6. IP Collocation Factor – The metric penalizing the number of peers connecting from the same IP address,
that surpasses an application-controlled threshold.

This approach lends well to a protocol which has transparently validatable messages at time of receipt by a
node, however the multi-phase operations of the routing protocol makes this scoring metric impractical, as
well as the topic subscription model for a shard model that is not driven by address partitioning. That said,
the core structure of local mesh, global mesh, all nodes gossip with some kind of a scoring basis is a pattern
worth extending.

2.4.2 BlossomSub

Amending the GossipSub protocol, we replace the topic subscription/broadcast process to not be an exact
matching basis, but rather a counting bloom filter based approach, hence the name Blossom, a portmanteau of
Bloom-Sum. The scoring system is also amended to take advantage of the message reconstruction protocol
ensuring node mesh behaviors are correct, connectivity between nodes is altered to incorporate a circuit
construction, and finally time/rate related metrics are instead replaced by generic consumption of unforgeable
proofs of valid behavior. These alterations drastically improve privacy (IP collection is useless), remove
cheap Sybil attack potential (by virtue of making it very expensive to overwhelm the network), and no longer
require message inspection/processing at multiple points, reducing redundant compute costs.

2.4.2.1 Peer Discovery
Peer discovery is achieved through an open peer exchange, where nodes will offer a score-indexed list of
peers in terms of ip address and public route keys, or graph address and capabilities.

18



Quilibrium A PREPRINT

Figure 5: A depiction of a SLRP cluster under BlossomSub – each black circle corresponds to a node, a box
with arrows indicates a participant, and 3, 2, and 1 nested circles indicate remaining envelope depth

Node operation capabilities are typically self-adjusting, but in the event a node operator explicitly configures
their node to enable/disable certain capabilities (at the impact of their score), only the capabilities the node
broadcasts support for will be given.

Algorithm 16 Gossip Channeling Join/Graft
1: A node scans the list for nodes with ROUTE capability.
2: At random, six nodes are picked, and an enveloped 3-depth gossip channel with each is created.
3: The node gossips a bandwidth-adjusted JOIN [bitmask] message (bitmasks are calculated relative to

bandwidth, this adjusts periodically) with a fresh random join public key.
4: Nodes processing within that bitmask will gossip a GRAFT [bitmask] message with a fresh random

graft public key, exchanged with the gossiped JOIN key. This GRAFT should only occur on one of the
gossip channels.

5: Nodes accepting the GRAFT initiate an ad-hoc join of Triple-Ratchet for the cluster, and begin
participation in SLRP.

For routing functionality, we can adopt the basic GossipSub scoring mechanism[VNM+20]. To preserve
anonymity and unlinkability of application-level functions, the other functions are only associated with a
graph address and carry an implicit scoring system.
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Algorithm 17 Implicit Node Scoring
1: V =

∑n
i=1 rivi, where V is the aggregate sum of duration of data blocks made available vi, and the rate

at which they were requested ri. The purpose is to reward long-term retention of data.
2: A = avg({r1a1, r2a2, ..., rnan}), where A is the averaged ratio of attested data requests pro-

cessed:unprocessed, and the inverse rate at which they were requested. The purpose is to reward
rare data deliverability.

3: Score = V +A

Because these metrics are unforgeable proof broadcasts (See Section 3), nodes can implicitly sweep these
into a sorting basis.

3 Block Storage

Block storage in Quilibrium is built as a Verifiable Delay Function (VDF) driven proof of storage, with query
processing proof of validity.

Figure 6: A depiction of a VDF master pulse clock feeding into initial input of a block availability, plus the
bloom clock input basis conjoined with Merkle proofs to incorporate in next VDF interval input

3.1 Verifiable Delay Function Timestamping

In "Verifiable Delay Functions", Boneh et. al. introduced a formalization of the behavior of what constitutes
a verifiable delay function (VDF), along with some candidate functions. In short, the behavior of a VDF
should satisfy three properties[BBBF19]:

1. Sequential – The processing of the function is inherently non-parallelizable.

2. Efficiently Verifiable – Verifying the proof output of evaluation must be sufficiently faster than calculating
the proof itself.

3. Unique – It is computationally infeasible to find an output for a given input that collides with another
output and proof.
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Many constructions of VDFs relate to the problem of squaring a number repeatedly under an algebraic
group that is computationally infeasible to shortcut. In a related, earlier construction, Timelock puzzles
utilized squaring under an RSA group, however knowledge of the prime factors was sufficient to calculate
this efficiently, i.e. a proof of spending this quantity of time is reliant on a trusted setup. Additionally, it is
not universally verifiable – the verifier must be aware of the secret state.

3.1.1 Wesolowski VDF

In "Efficient verifiable delay functions", by Benjamin Wesolowski, a construction based around imaginary
quadratic cryptography is proposed. Under certain conditions, the class group of an imaginary quadratic field
enables a construction of the aforementioned repeated-squaring approach, but is efficiently and universally
verifiable[Wes18].

Other networks have adopted the use of this VDF, such as Chia Network, and by consequence of their
consensus mechanism being Nakamoto consensus using VDF as a unique proof of holding space over time,
the network incentives were strongly aligned to the production of ASICs which implement this VDF as
efficiently as possible. We thus have a very well-defined upper bound on the performance of this approach,
and node operators wishing to provide as broad a collection of proofs have specialized hardware already
meaningfully available to do so. To ensure this compatibility, we have adopted the classgroup arithmetic
specified in "Binary quadratic forms" by Lipa Long[Lon20].

Using this VDF, the network initially bootstraps its master pulse clock input over the first hour of network
runtime. When the network is first launched, operators will begin mesh construction following the processes
of Section 2. Either after an hour is reached, or the network mesh remains sufficiently stabilized, whichever
occurs first, the network will collectively perform a global KZG[KZG10] initialization ceremony, and toss
the field element, publishing the public parameters. This will serve as the genesis input for the master pulse
VDF.

The VDF proofs are gossiped as a bundle every second to the network, serving as the heartbeat for BlossomSub,
tagged with the current UTC time of the node creating the proof. Every hour thereafter, the network will
evaluate the gossipped proofs against the global delta, as some machines will inherently emit at a slightly
faster rate. The iteration count of the VDF is recalibrated to remain aligned to 100ms intervals. Because there
is no reward basis attached to computing the master pulse VDF, this recalibration process is not inherently
tilted towards the fastest producers, but rather the mean. This is so that VDF proof generation built around
ASICs is favored for block storage proofs instead.

To utilize the VDF for block storage, the first frame of the block snapshot will incorporate the VDF proof
output from the master pulse clock at time of initiation. Subsequent iterations of the VDF will incorporate
the previous iteration’s output as a selection modulo block chunk size, choosing a Merkle proof of the block
to input as the next iteration.

To form a bond between data pulses and the master pulse clock, at the end of each hour, the polynomial
commitments of the current state of the data block are broadcast – the subsequent hour admits time for gossip
to be collected from all nodes, and is then merged into the inputs of the master pulse clock. This weaving
pattern enables global state reconciliation, however individual clusters will always remain up to date (or
participants will lose their reward).

3.2 Bloom Clock Event Capture

As SLRP clusters admit messages which alter the processed blocks structurally, the messages under the
capture window are collected as inputs to a bloom clock for the block, and thus the clock filter is joined with
the subsequent Merkle proof selection, forming the new input for the data pulse. To attach an intrinsic reward
basis, the data pulse clock is additionally run on the same data, for each interval encrypted using a proof
reward key exchanged with a public ephemeral key to form a symmetric key, then subsequently the private
ephemeral key is revealed as the input of the next pulse.
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4 Oblivious Hypergraph

With a network formally constructed that manages arbitrary block storage, we now incorporate the messaging
structure that enables arbitrary queryability, expressing this block storage as the data settlement layer of
a hypergraph. In the context of oblivious data structures, this particular construction is oblivious in the
sense that evaluating queries is unclear to the nodes processing the requests as to whether or not the request
evaluated data corresponding to specific edges and vertices of the hypergraph, the requestor is blind to the
contents of any additional data served to it, and someone who has a complete ingestion of the network cannot
determine any meaningful data about the contents, structure, or relevant processors of the hypergraph. In the
context of oblivious transfer-based communication, the oblivious hypergraph is realized utilizing OT based
communication.

4.1 Hypergraph Construction

Hypergraphs are a generalization of graphs in which the edges are capable of connecting more than two
vertices, and thus are referred to as hyperedges. There are many higher-degree relationships which can be
expressed over hypergraphs, such that any variety of database model can be directly expressed over one. This
makes a hypergraph a useful tool for representing and querying such data. Performance is not always of
course better under a hypergraph, but the generalization is valuable in that it lends to a query pattern that is
able to be efficiently made oblivious.

Figure 7: A depiction of a simple hypergraph, where the sets of vertices [F, I, K], [B, H, I], [J, K, H], [D, E,
F], [D, G, H], [B, G], and [A, C, L] are all connected by hyperedges.

In the context of Quilibrium, any hypergraph-oriented approach is amenable as the clients can be updated to
support them, however to realize most immediately useful functionality in bridging traditional web resources
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with decentralized resources, we firstly implement our data mapping strategy as an engine for querying RDF
graphs.

4.2 Oblivious Transfer

Oblivious Transfer is a cryptographic technique in which a sender and a receiver engage in a series of
messages between one another such that a sender has messages which a receiver can request, the receiver
makes a choice, and prepares a response which the sender consumes and applies to the messages being sent
but is unaware of the choice made by the receiver, then responds with the choice-applied message data such
that upon receipt by the receiver, they are able to consume the intended message, but gain no awareness of
the contents of the other messages.

We begin by explaining some base concepts of oblivious transfer protocols such that it becomes easier to
follow along in the broader construction.

4.2.1 Simplest OT

In "The Simplest Protocol for Oblivious Transfer", Chou and Orlandi defined a new approach to oblivious
transfer in which the construction relied only on the same assumptions as Diffie-Hellman. The approach is
summarized below[CO15]:

Algorithm 18 Simplest OT over ECC
1: Given a sender has two messages, m0,m1, and a receiver has a choice bit c, both parties sample a random

private scalar x← Fp The sender’s private scalar will be denoted as a, the receiver’s private scalar will
be denoted as b.

2: The sender calculates the point A = a ·G, and sends this to the receiver.
3: If the receiver’s choice bit is 0, the receiver replies with B = b · G. If 1, the receiver replies with

B = A+ (b ·G).
4: The sender calculates two keys, k0 = H(a ·B), and k1 = H(a · (B −A)), then encrypts m0 with k0,

m1 with k1, and sends both encrypted messages to the receiver.
5: The receiver calculates kc = H(b ·A), and then uses this value to decrypt their chosen message.

Because neither party has the other party’s private scalar, provided the discrete logarithm assumption holds, it
is impossible for the receiver to calculate the other message’s key, and impossible for the sender to calculate
the receiver’s choice.

Simplest OT is capable of only delivering a singular choice of two messages, and has to be re-evaluated
from scratch for each subsequent bit of information learned. Because of this, it is a poor system to directly
construct oblivious protocols, however it is exceptionally useful to build on top of as a base OT seed for
extension.

4.2.2 Correlated OT

Correlated oblivious transfer is a variant of oblivious transfer where instead of sending a singular choice, the
choices themselves are implicitly correlated. The traditional extension approach[IKNP03] involves a Random
OT base, where the initial choice is random, and then pseudo-random extensions of the random seeds enable
larger correlated constructions with many bits being able to be transferred based on the correlation without
the cost of doing a singular OT for every bit. This is utilized in many MPC protocols, and further extended in
subsequent papers such as "Actively Secure OT Extension with Optimal Overhead" [KOS15].

At the lower level, correlated OT looks like the following:
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Algorithm 19 Correlated OT
1: The receiver obtains a ∆ ∈ F2κ from the sender.
2: For every extension:

• Sample v ← Fℓ
2κ . If the sender is corrupted, instead receive v ← Fℓ

2κ from the adversary.
• Sample u ← Fℓ

2 and compute w := v + u ·∆ ∈ Fℓ
2κ . If the receiver is corrupted, instead

receive u ← Fℓ
2 and w ← Fℓ

2κ from the adversary, and recompute w := v + u ·∆ ∈ Fℓ
2κ .

4.2.3 Correlated OT Extension over LPN

In "Ferret: Fast Extension for Correlated OT with Small Communication", the authors contributed improve-
ments to this protocol have sufficiently made COT feasible for general computability at speed. In short, the
speed improvements are nearly over 200 times faster per correlation[YWL+20].

For brevity, we list only the functions relevant to Quilibrium’s instantiation of Ferret, from the
article[YWL+20]:

Algorithm 20 Multi-Point Correlated OT
1: Given a family of efficiently-computable functions Φ = {Φn,t}n,t∈N such that for any n, t ∈ N with

t ≤ n, Φn,t takes as an input a sorted subset of [n] of size t and outputs another subset of [m] with the
same size for some integer t ≤ m ≤ n.

2: The receiver obtains a ∆ ∈ F2κ from the sender.
3: For extension, the receiver and sender agree to n, t, and the receiver sends Q = {a0, ...at−1} where

Q ⊆ [n] is a sorted set:
• Sample v ← Fn

2κ . If the sender is corrupted, instead receive v ← Fn
2κ from the adversary.

• Define an n-sized bit vector u := I(n,Q), and compute w := v + u ·∆ ∈ Fn
2κ . If the

receiver is corrupted, instead receive u ← Fn
2 and w ← Fn

2κ from the adversary, and recompute
w := v + u ·∆ ∈ Fn

2κ .
4: Compute the set T = {β0, ...βt−1} := Φn,t({α0, ...αt−1}).
5: Wait for the adversary to input m sets I0, ...Im−1 ⊆ [n] ∪ {−1}.
6: Check that αi ∈ Iβi

for all i ∈ [t] and −1 ∈ Ij for all j ∈ [m] \ T . If the check fails, the process aborts.

Algorithm 21 Deal COT/MPCOT
1: Given a family of efficiently-computable functions Φ = {Φn,t}n,t∈N such that for any n, t ∈ N with

t ≤ n, Φn,t takes as an input a sorted subset of [n] of size t and outputs another subset of [m] with the
same size for some integer t ≤ m ≤ n.

2: To initialize: The receiver obtains a ∆ ∈ F2κ from the sender.
3: To COT Extend: Call Correlated OT (Algorithm 19), receive ℓ random COT correlations.
4: To MPCOT Extend: Call MPCOT (Algorithm 20), receive a multi-point COT of length n.
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Algorithm 22 Ferret COT Protocol

1: Given LPN parameters (n, k, t) and code generator C such that C(k, n,F) outputs a matrix A ∈ Fk×n
2 .

2: Both parties initialize once, sender samples a uniform ∆ ∈ F2κ and both parties invoke the Deal
(Algorithm 21) initialization step.

3: Both parties invoke the COT extend functionality of Deal (Algorithm 21), returning v ← Fk
2κ to sender,

(u,w) ∈ Fk
2 × Fk

2κ to the receiver such that w := v + u ·∆.
4: To extend:

• The receiver samples A ← C(k, n,F2) and e ← HWt, then sends A to the sender. Let
Q = {a0, ...at−1} ⊆ [n] be the sorted indices of non-zero entries in e.

• The sender and receiver invokes the Deal (Algorithm 21) MPCOT functionality, returning
s ∈ Fn

2κ to the sender and r ∈ Fn
2κ to the receiver, where r + s = e ·∆. If either party aborts,

this protocol aborts.
• The sender computes y := v ·A+ s ∈ Fn

2κ and the receiver computes x := u ·A+ e ∈ Fn
2 and

z := w ·A+ r ∈ Fn
2κ .

• The sender updates vector v := y[0 : k] ∈ Fk
2κ , and outputs a vector y′ := y[k : n] ∈ Fl

2κ .
The receiver updates vectors (u,w) := (x[0 : k], z[0 : k]) ∈ Fk

2 × Fk
2κ and outputs two vectors

(x ′, z ′) := (x[k : n], z[k : n]) ∈ Fl
2 × Fl

2κ .

On a 1st gen Intel Xeon Skylake-SP at 3.6GHz with 32GB of RAM, Ferret is capable of generating 60
million COTs per second. AES, for example, requires 219 OTs [ALSZ15], resulting in approximately 120
evaluations of AES within one second, provided sufficient bandwidth (50Mbps).

4.3 RDF to Hypergraph

The construction is described in the paper "Hypergraph Based Query Optimization", which we will use by
translating the logic to OT circuits, starting with decryption into the circuit using the extended decryption
process of the address content. We adopt their term definitions in this and subsequent two subsections of the
paper, their definitions provided here roughly verbatim for convenience[SGDD15]:

1. RDF Graph – G = (V,E) where V = {v|v ∈ S ∪O} and E = {e1, e2, ...}∃e = {u, v} where u, v ∈ V .

2. Edge Labeling Function – le(S,O) = P .

3. Node Labeling Function – lv(vt) = t where t ∈ (S ∪O) and S = Subject(URI ∪BLANKS), P =
Predicate(URI), O = Object(URI ∪BLANKS ∪ LIT ).

4. Hypergraph – H(G) = (V,E) where node V = {v1, ..., vn} and E = {e1, ..., en} where V = {v|v ∈
S ∪O ∪ P} and each edge E is a non-empty set of V . ∀P,∃e|(Si, Oi) ∈ H(G) where 1 ≤ i ≤ n.

5. Overlapping Hyperedge – (hi(G) ⊑ hi+1(G)) where h1(G) = (S1, P1, O1) and h2(G) = (S2, P2, O2),
(h1(G) ⊑ h2(G)) iff ∀s1 ∈ S1 ∈ h1(G)∃s2 ∈ S2 ∈ h2(G)∨∀o1 ∈ O1 ∈ h1(G)∃o2 ∈ O2 ∈ h2(G)∨∀p1 ∈
P1 ∈ h1(G)∃p2 ∈ P2 ∈ h2(G).

6. Predicate-Based Index – I(G) = (V,E) where V = {v|v ∈ Pi ∈ hi ∧ δ} and E = (vi, vj) where
vi, vj ∈ V and 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n for δ ∈ V ∃e = (δ, v). δ is the root of the index.

7. SPARQL Query – QR contains < Qq, Qs, Qp > where Qq is the query form and Qp is the match pattern
if ?x ∈ var(Qq) then ?x ∈ var(Qp) and Qs contains constraints like FILTER, OPTIONAL.

8. Query Graph – QG = (V,E), V ← {var ∈ Qp
i } and E ← {P ∈ Qp

i ∧ (var ∈ Qp
i , var ∈ Qp

i+1)}
where 1 ≤ i ≤ n, n is the number of predicates, P is the predicate.

9. Query Path – Qpath∃Qpath, δ → Pi ∈ I(G)|Pi. size = minsize ∧ (Pi → Pi+1) ∈ I(G) if ∃var ∈
Qp

i == var ∈ Qp
i+1.
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10. Data Insertion – Given QR and Qp then check ∃Pi ∈ Qp ∈ I(G), if true then check Pi ∈ H(G) ∨
createhi ∈ Pi ∧ updateH(G) with hi. Check if ∃var ∈ Qp ∈ H(G), if true then overlap hi with var’s
h ∨ updatehi with var ∈ Qp.

11. Data Deletion – Given QR and Qp then check ∃Pi ∈ Qp ∈ I(G) ∧ Pi ∈ var, if true then check
|hi| == 0, if true then remove var ∈ Qp ∈ H(G)∨ copy of Pi exists.

Given these definitions, their paper proposes algorithms to perform the whole of the queries for this
database[SGDD15]:

Algorithm 23 Create Hypergraph
1: Given an RDF graph G as triple (S,O, P ).
2: V ← ∅, E ← ∅, ei ← ∅
3: ∀(S,O, P ) ∈ G,V ← V ∪ V ∈ (S ∪O ∪ P ).
4: ∀Pi|1 ≤ i ≤ n, 1 ≤ j ≤ n, ei ← {Pi, {Sj , Oj}}, E ← ei.
5: H(G) = (V,E).

Algorithm 24 Create Predicate-Based Index
1: Given a hypergraph H(G).
2: Sort hyperedges by size.
3: ∀hi|1 ≤ i ≤ n − 1, if MIN(size(hi)) then I(G) = I(G) ∪ δ ↓ Pi, ∀j|i + 1 ≤ j ≤ n, if (hi(G) ⊑

hj(G)) ∧ (size(Pi) == size(Pj)) then I(G) = I(G) ∪ Pi ↔ Pj else I(G) = I(G) ∪ Pi → Pj .

Given this construction, we now split between the roles of query planner and evaluator.

4.4 Query Planner

For query planning, the sender role is conducted by the key holder for the relevant resources. The receiver
role is conducted by the cluster(s) responsible for the hypergraph. Again, these algorithms are produced from
the source literature[SGDD15]:

Algorithm 25 Create SPARQL Query Graph
1: Given a query match pattern Qp ∈ QR.
2: V ← ∅, E ← ∅
3: ∀Qp

i |1 ≤ i

• if i == 1, V ← V ∪ (var ∈ Qp
i .S ∪ var ∈ Qp

i .O), E ← (var ∈ Qp
i .S, var ∈ Qp

i .O)
• if i ≥ 2, if (var ∈ Qp

i .S == var ∈ Qp
i+1.S) ∧ (var ∈ Qp

i .O == var ∈ Qp
i+1.S) then

V ← V ∪ var ∈ Qp
i .S, E ← (var ∈ Qp

i , var ∈ Qp
i+1) else V ← V ∪ var ∈ Qp

i+1.O,E ←
(var ∈ Qp

i , var ∈ Qp
i+1)

• else, if (var ∈ Qp
i .S == var ∈ Qp

i+1.O) ∧ (var ∈ Qp
i .O == var ∈ Qp

i+1.O) then if
∃var ∈ Qp

i+1.S ∈ V, V ← V ∪ var ∈ Qp
i .S, E ← (var ∈ Qp

i , var ∈ Qp
i+1). MIN(size(hi))

then I(G) = I(G)∪ δ ↓ Pi,∀j|i+ 1 ≤ j ≤ n, if (hi(G) ⊑ hj(G))∧ (size(Pi) == size(Pj))
then I(G) = I(G) ∪ Pi ↔ Pj else I(G) = I(G) ∪ Pi → Pj .

• If not (var ∈ Qp
i .S == var ∈ Qp

i+1.O) ∧ (var ∈ Qp
i .O == var ∈ Qp

i+1.O), then V ←
V ∪ var ∈ Qp

i+1.S, E ← (var ∈ Qp
i , var ∈ Qp

i+1).

4: QG = (V,E)
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Algorithm 26 Create Query Path
1: Given a set of predicates P ∈ QG, QG and I(G).
2: Start from δ.
3: Qpath ← δ → min(size(Pi)) ∈ I(G)
4: ∀Qi|1 ≤ i ≤ n − 1, i + 1 ≤ j ≤ n, if ∃var ∈ Qp

i ∈ QG == var ∈ Qp
j ∈ QG, then Qpath ←

Qpath ∪ (Pi → Pj) ∈ I(G).

4.5 Query Evaluator

Execution of queries retains the same role responsibility, where the receiver is the cluster(s) responsible
for the hypergraph, and the sender is the keyholder. The sender being blind to decisions of the receiver,
makes the query being processed indistinguishable from gossip requests for additional data blocks, which
will happen by virtue of the parent BlossomSub protocol. Again, the algorithms are produced from the source
literature[SGDD15]:

Algorithm 27 Load Node (Qp
i (S,O))

1: V ← ∅, E ← ∅
2: Execute query on hi.
3: vi ← S ∧ wj ← O, V ← {vi, wj}, E ← (vi, wj), QAG

i ← (V,E)
4: Return QAG

i .

Algorithm 28 Load Neighbor Node (Qp
i , Q

p
i+1(S,O))

1: V ← ∅, E ← ∅
2: If (Qp

i .S == Qp
i+1.S) ∧ (Qp

i .O == Qp
i+1.S), then if ∃Qp

i+1.O ∈ V then V ← V ∪ Qp
i .S ∧ Qp

i .O ∈
Qp

i+1.O,E ← (V ∈ Qp
i , V ∈ Qp

i+1) else V ← V ∪Qp
i+1.O,E ← (V ∈ Qp

i , V ∈ Qp
i+1).

3: Else, if (Qp
i .S == Qp

i+1.O)∧(Qp
i .O == Qp

i+1.O) then if ∃Qp
i+1.S ∈ V then V ← V ∪Qp

i .S∧Q
p
i .O ∈

Qp
i+1.S, E ← (V ∈ Qp

i , V ∈ Qp
i+1), else V ← V ∪Qp

i+1.S, E ← (V ∈ Qp
i , V ∈ Qp

i+1). In either case,
QAG ← QAG

i ∪ (V,E)
4: Return QAG.

Algorithm 29 Process Query
1: Given QG, Qp and I(G).
2: ∀Qp

i |1 ≤ i ≤ n − 1, if i == 1 then execute LoadNode with Qp
i (S,O), else execute

LoadNeighborNode with Qp
i , Q

p
i+1(S,O).

3: Return QAG.

Finally, the authors produced a cost function for graph creation[SGDD15]:

cost(H(G)) =
∑n

i=1 cost(Vi.Ei)

And query processing[SGDD15]:

cost(Qproc) =
∑

Pi∈Qpath cost(Pi)

We adopt these cost metrics in terms of OTs required for evaluating predicates Pi, and storing of vertices per
Vi and edges per Ei.
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4.6 Turing Completeness

While a hypergraph of course can represent a Turing machine’s tape and perform queries which evaluate state
transitions of the Turing machine, and thus it can be easily stated that as-is this design is Turing-complete,
it would be painfully slow, as building the index is in of itself bounded at a complexity of O(n2) where n
is the number of hyperedges for a given predicate and processing is O(n) where n is the number of match
patterns. Instead, we can trade off to utilizing our OT circuit building techniques to loading circuits stored as
resources on the global hypergraph. Because loading and storing onto hypergraphs requires a controlling key,
and that key is known to be needed at the time of the query, we have an ideal resource control mechanism in
the form of asking for relevant control keys before the query is executed, which can flag potential abuse in
cross-resource querying.

5 Operating System

We now define the operating system layer of Quilibrium, in which we build a database operating system
on the hypergraph database, realizing common OS primitives, such as a file system, scheduler, IPC-like
equivalent, message queuing, control key management, then finally a universal resource pattern, in which we
globally define resources, and unique instances of those resources, initially with an Account resource, which
tracks the balance of individual holders’ network reward tokens, unifying the reward structure at the most
base level of the protocol all the way up the architectural stack.

Figure 8: The complete view of Quilibrium’s layers

5.1 Database Operating System

The idea of database-oriented operating systems is a newer idea, first formalized in "DBOS: A DBMS-oriented
Operating System", where the authors introduce a microkernel-style base layer upon which a distributed
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database has raw device access, and then OS-level primitives are realized on top of the database [SLK+22].
In the same way, we will realize OS-level primitives to make decentralized application development simpler,
however, it will not involve a base level microkernel necessarily (although this is not to preclude someone
from building a rumpkernel host for Quilibrium nodes), nor will these primitives be represented as sharded
tables. Instead, we will rely on the hypergraph representation of RDF, and construct these resources through
this. For simplicity in representation, we will use RDF syntax to define these things. Through named IRI
references to the address of any graph, we can link these concepts together where relevant.

5.2 File System

We begin with a basic representation of loose files – while typical file systems are hierarchical, we adopt an
object store more proximate to S3.

:File a rdfs:Class;
rdfs:label "a file object".

:FileSize a rdfs:Property
rdfs:domain rdfs:Literal;
rdfs:range :File.

:FileName a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :File.

:FileOctet a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :File.

:Block a rdfs:Class;
rdfs:label "a block of data";

:FileParent a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :File.

:BlockHash a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :Block.

:BlockData a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :Block.

:BlockNumber a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :BlockData.

:BlockNumber a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :BlockData.

:BlockSize a rdfs:Property
rdfs:domain rdfs:Literal;
rdfs:range :Block.

This representation can of course be extended to provide additional features, but is sufficient for describing a
basic block list associated with a file. With FUSE drivers per RDF2FS, we immediately gain a direct bridge
between classical OS and Quilibrium, offering file backup capabilities.

5.3 Scheduler

We define a scheduler based on two possible types, a priority-based scheduler (where tasks can be easily
ordered as a max-heap), and a cron-based scheduler (where repeated tasks will get picked up at increments
aligned to the schedule).
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:Task a rdfs:Class;
rdfs:label "a simple task".

:TaskData a rdfs:Property;
rdfs:domain :File;
rdfs:range :Task.

:TaskPriority a rdfs:Property;
rdfs:label "a one-time execution parameter that indicates the 0-255 priority, in order of priority";
rdfs:domain rdfs:Literal;
rdfs:range :Task.

:TaskSchedule a rdfs:Property;
rdfs:label "A cron string that describes the frequency to evaluate the task";
rdfs:domain rdfs:Literal;
rdfs:range :Task.

:TaskResult a rdfs:Property;
rdfs:domain rdfs:File;
rdfs:range :Task.

5.4 Inter-Process Communication

Defining IPC in RDF is easily achieved, using a named graph based structure:

:IPCMessage a rdfs:Class;
rdfs:label "a message".

:MessageData a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :IPCMessage.

:ToAddress a rdfs:Property;
rdfs:label "the address of the target graph";
rdfs:domain rdfs:Literal;
rdfs:range :IPCMessage.

5.5 Message Queue

Construction of a basic message queue can be achieved by a linked list, with a parent reference.

:Queue a rdfs:Class;
rdfs:label "a FIFO queue".

:QueueNode a rdfs:Class;
rdfs:label "a node in a queue".

:HeadNode a rdfs:Property;
rdfs:domain :QueueNode;
rdfs:range :Queue.

:NextNode a rdfs:Property;
rdfs:domain :QueueNode;
rdfs:range :QueueNode.

:QueueMessage a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :QueueNode.

5.6 Key Management

Key management is a necessary component of the protocol, as to allow any member of a cluster to participate
on their relevant side of an OT circuit. This is additionally important in the context of non-interactive
processing – where a client is not directly initiating the computation, but rather the protocol has prompted it,
by virtue of task management or other functions.
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:Key a rdfs:Class;
rdfs:label "a key object".

:KeyShare a rdfs:Class;
rdfs:label "a share corresponding to a key".

:OfKey a rdfs:Property;
rdfs:domain :Key;
rdfs:range :KeyShare.

:Format a rdfs:Property;
rdfs:domain :literal;
rdfs:range :Key.

:PublicData a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :Key.

:Protocol a rdfs:Property;
rdfs:domain :literal;
rdfs:range :Key.

:KeyData a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :KeyShare.

Because the distinct sections of data are effectively controlled and encrypted by the relevant keyholders,
provided keyshare owners are not one and the same, the key never will exist combined on a single device, but
further, even if keyshare owners are one and the same, their meaningful online use would still be reflected in
the global hypergraph mutation and thus cannot be used to forge state.

The Protocol reference property is multi-purpose – because it is a Literal, it may refer to a known protocol
that is baked into the node software, or, if all parties are inclined to engage, can refer to an executable File
reference which can contain an OT circuit, so as to enable additional MPC protocols not inherent to network
function.

5.7 Accounts

Accounts are the aspect that allows one to assert both identity and balances. The network reward token will
be a Coin, which in a simple form would be merely an exchangeable, splittable unit of balance, but in the
historic context of cryptocurrencies, there have been problems discovered in both public block chains and
private block chains. The Quilibrium network is a private computation network, and by virtue there exists an
ethical dilemma: rigid financial institutions cannot accept a coin without explicit proof of legitimacy, but
people deserve a right to financial privacy. To counteract this problem, we adopt a bloom filter property,
which on the transfer of a coin, the circuit will apply the holding account’s public address. Because a user
may wish to check this coin against a public registry of known bad actors, they may reference a public list
provided by a financial institution, wherein they can choose to accept this coin, or reject it, which will result
in its completed transfer to the designated refund address. Coins may be joined together, with the caveat that
the bloom filter will also be unioned, but the choice of joining is at the behest of the owner. Similarly, Coins
may be split, but will inherit the bloom filter.

:Account a rdfs:Class;
rdfs:label "an account object".

:Coin a rdfs:Class;
rdfs:label "an object containing a numeric balance and historical lineage".

:CoinBalance a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :Coin.

:OwnerAccount a rdfs:Property;
rdfs:domain rdfs:Account;
rdfs:range :Coin.
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:LineageFilter a rdfs:Property;
rdfs:domain rdfs:Literal;
rdfs:range :Coin.

:PendingTransaction a rdfs:Class;
rdfs:label "a pending transaction".

:ToAccount a rdfs:Property;
rdfs:domain rdfs:Account;
rdfs:range :PendingTransaction.

:RefundAccount a rdfs:Property;
rdfs:domain rdfs:Account;
rdfs:range :PendingTransaction.

:OfCoin a rdfs:Property;
rdfs:domain :Coin;
rdfs:range :PendingTransaction.

Notably, the presence of a pending transaction does not reveal a source account, retaining sender privacy
outside of a bloom filter entry, and so if the sender wishes to retain that privacy they may designate an
alternative account for refund, then consolidate funds afterwards.

5.8 Universal Resources

The definitions of these RDF schema will be deployed to the network on initialization by the Quilibrium
team, with an access key so that any member of the network may read them and reference them. This model
of schema deployment is intended such that anyone may deploy a new data schema and instantiate a universal
resource. We further intend to migrate ownership of these schema to a separate foundation, which can be
governed independently such that the improvements remain in the pure interest of the network’s continued
function and evolution.
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